14.8 Videos Guide

14.8a

- The method of Lagrange multipliers
 - o In \mathbb{R}^2 and \mathbb{R}^3 , when optimizing a function f subject to the equation g=c, we use the fact that $\nabla f = \lambda \nabla g$ (λ is called the Lagrange multiplier)

Exercises:

• Find the maximum area for a rectangle inscribed in the ellipse $\frac{x^2}{3^2} + \frac{y^2}{4^2}$

14.8b

• Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.

$$f(x,y) = 3x + y; \quad x^2 + y^2 = 10$$

o
$$f(x,y) = xe^y$$
; $x^2 + y^2 = 2$

14.8c

o
$$f(x, y, z) = \ln(x^2 + 1) + \ln(y^2 + 1) + \ln(z^2 + 1);$$
 $x^2 + y^2 + z^2 = 12$

14.8d

• Use Lagrange multipliers to find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4, 2, 0).

14.8e

• When optimizing a function f(x, y, z) subject to two constraints g = k and h = c, we use $\nabla f = \lambda \nabla g + \mu \nabla h$

Exercise:

 $\bullet \quad \hbox{Find the extreme values of } f \hbox{ subject to both constraints}.$

$$f(x, y, z) = z$$
; $x^2 + y^2 = z^2$, $x + y + z = 24$